Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jiang Cheng, Yan-Hui Sun, Yi Pan and Jian-Hua Xu*

Department of Chemistry, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: xujh@nju.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.034$
$w R$ factor $=0.081$
Data-to-parameter ratio $=8.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

(S)-(-)-5,5'-Bis(diphenylphosphino)-2,2,2', $\mathbf{2}^{\prime}$-tetra-methyl-4,4'-bi-1,3-benzodioxole

The title molecule, $\mathrm{C}_{42} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{P}_{2}$, is a new atropoisomeric bisphosphine ligand. All bond lengths and angles are normal. In the crystal structure, the molecule possesses a crystallographically imposed C_{2} axis. The two benzene rings in the biphenyl moiety make a dihedral angle of $84.23(6)^{\circ}$.

Comment

Since 1968, when a chiral phosphine was first utilized in asymmetric hydrogenation (Knowles \& Sabacky, 1968 Horner et al., 1968), much effort has been devoted to the design and synthesis of chiral phosphine ligands. The atropoisomeric $C_{2^{-}}$ symmetric bis-phosphine ligands play an important role in asymmetric hydrogenation (Zhang et al., 2000; Saito et al., 2001). We report here the crystal structure of the title compound, (I), a new atropoisomeric C_{2}-symmetric bis-phosphine ligand.

(I)

In the crystal structure, molecules of (I) possesses a crystallographically imposed C_{2} axis (Fig. 1). All bond lengths and angles are normal. The two benzene rings in the biphenyl moiety make a dihedral angle of $84.23(6)^{\circ}$. All rings are planar.

Experimental

Under argon, a 100 ml three-necked flask was charged with $(S)-(-)$ -5,5'-bis(diphenylphosphinoyl)-2,2,2', 2^{\prime}-tetramethyl-4,4'-bi-1,3-benzodioxole $(0.0698 \mathrm{~g}, 1 \mathrm{mmol})$, toluene (11 ml), N, N-dimethylaniline $(1.4 \mathrm{ml}, 10 \mathrm{mmol})$ and trichlorosilane $(1.01 \mathrm{ml}, 10 \mathrm{mmol})$. The mixture was refluxed for 10 h . After the mixture had cooled to 273 K , a degassed $50 \% \mathrm{NaOH}$ solution (50 ml) was added carefully. The product was extracted with toluene (30 ml) twice, The extract was washed successively with $10 \% \mathrm{HCl}$, water and brine, then dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the crude product. Recrystallization from MeOH afforded a white solid. ${ }^{1} \mathrm{H}$ NMR (chloroform- d): $\delta 1.12(6 \mathrm{H}, s), 1.58(6 \mathrm{H}, s), 6.56(2 \mathrm{H}, d, J=7.8 \mathrm{~Hz})$, $6.67(2 \mathrm{H}, d, J=7.8 \mathrm{~Hz}), 7.11-7.25(20 \mathrm{H}, m) .{ }^{13} \mathrm{C}$ NMR (chloroformd): $25.27,25.93,108.46,118.27,122.77-147.86 .{ }^{31} \mathrm{C}$ NMR (chloroformd): -14.44. MS (ESI): 667 HRMS (ESI). Calculated for $\mathrm{C}_{42} \mathrm{H}_{36} \mathrm{NaO}_{4} \mathrm{P}_{2}$ $[M+\mathrm{Na}]^{+}: 689.1891$; found: 689.1966 .

Received 11 October 2004 Accepted 19 October 2004 Online 30 October 2004

organic papers

Crystal data

$\mathrm{C}_{42} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{P}_{2}$
$M_{r}=666.65$
Orthorhombic, $P 2_{1} 2_{1} 2$
$a=9.7007$ (9) A
$b=20.774$ (2) \AA
$c=8.9149$ (9) \AA
$V=1796.6(3) \AA^{3}$
$Z=2$
$D_{x}=1.232 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART APEX areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2002)
$T_{\text {min }}=0.924, T_{\text {max }}=0.946$
9313 measured reflections

Mo $K \alpha$ radiation
Cell parameters from 2896
reflections
$\theta=4.6-22.3^{\circ}$
$\mu=0.16 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colorless $0.50 \times 0.41 \times 0.35 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.081$
$S=0.99$
1877 reflections
220 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0487 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.19 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0085 (14)
Absolute structure: Flack (1983),
1357 Friedel pairs
Flack parameter $=0.00(9)$

H atoms were placed in calculates positions $(\mathrm{C}-\mathrm{H}=0.93-0.96 \AA)$ and refiend as riding, with $U_{\text {iso }}(\mathrm{H})=1.2$ or 1.5 times $U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

The formula unit of (I), with the atom numbering, showing displacement ellipsoids at the 50% probability level [symmetry code: (i) $-x, 1-y, z$].

This work was supported by the National Natural Science Foundation of China (NSFC, No. 20272024) and the SRFDP Provincial Natural Science Foundation of China (No. 20010284033).

References

Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02), SMART (Version 5.62) and SHELXTL (Version 6.10).Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Horner, L., Siegel, H. \& Buthe, H. (1968). Angew. Chem. Int. Ed. Engl. 7, 942. Knowles, W. S. \& Sabacky, M. J. (1968). J. Chem. Soc. Chem. Commun. pp. 1445-1446.
Saito, T., Yokozawa, T., Ishizaki, T., Moroi, T., Sayo, N., Muira, T. \& Kumobayashi, H. (2001). Adv. Synth. Catal. 343, 264-267.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zhang, Z., Qian, H., Longmire, J. \& Zhang, X. (2000). J. Org. Chem. 65, 62236226.

